A Refined Composite Multivariate Multiscale Fuzzy Entropy and Laplacian Score-Based Fault Diagnosis Method for Rolling Bearings
نویسندگان
چکیده
The vibration signals of rolling bearings are often nonlinear and non-stationary. Multiscale entropy (MSE) has been widely applied to measure the complexity of nonlinear mechanical vibration signals, however, at present only the single channel vibration signals are used for fault diagnosis by many scholars. In this paper multiscale entropy in multivariate framework, i.e., multivariate multiscale entropy (MMSE) is introduced to machinery fault diagnosis to improve the efficiency of fault identification as much as possible through using multi-channel vibration information. MMSE evaluates the multivariate complexity of synchronous multi-channel data and is an effective method for measuring complexity and mutual nonlinear dynamic relationship, but its statistical stability is poor. Refined composite multivariate multiscale fuzzy entropy (RCMMFE) was developed to overcome the problems existing in MMSE and was compared with MSE, multiscale fuzzy entropy, MMSE and multivariate multiscale fuzzy entropy by analyzing simulation data. Finally, a new fault diagnosis method for rolling bearing was proposed based on RCMMFE for fault feature extraction, Laplacian score and particle swarm optimization support vector machine (PSO-SVM) for automatic fault mode identification. The proposed method was compared with the existing methods by analyzing experimental data analysis and the results indicate its effectiveness and superiority.
منابع مشابه
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملFault Diagnosis of Rolling Bearings Based on EWT and KDEC
Abstract: This study proposes a novel fault diagnosis method that is based on empirical wavelet transform (EWT) and kernel density estimation classifier (KDEC), which can well diagnose fault type of the rolling element bearings. With the proposed fault diagnosis method, the vibration signal of rolling element bearing was firstly decomposed into a series of F modes by EWT, and the root mean squa...
متن کاملRolling Bearing Fault Diagnosis Based on Wavelet Packet Decomposition and Multi-Scale Permutation Entropy
This paper presents a rolling bearing fault diagnosis approach by integrating wavelet packet decomposition (WPD) with multi-scale permutation entropy (MPE). The approach uses MPE values of the sub-frequency band signals to identify faults appearing in rolling bearings. Specifically, vibration signals measured from a rolling bearing test system with different defect conditions are decomposed int...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017